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Investigation of the stabilizability in the mean square of a linear system with 
several perturbations in the object and the control channel is reduced to the 

analysis of a simpler system with a smaller number of perturbations.Necessary 

and sufficient conditions of stabilizability are obtained, and a procedure for 
determining the stabilizing control is indicated. Effects of the perturbation 
pattern on the stabilizability of a system is investigated, and it is shown how 
such investigation can be simplified depending on the perturbation pattern. 

I., S t a t e m e n t o f t h e p r o b 1 e m. The behavior of systems whose 
random perturbations depend on their state and control is often described by stochastic 
differential equations 

2’ = Ax + Bu + riI o+%r’ + r&I %uQ.’ (1.1) 

Here x is the n-dimensional phase-coordinate vector, u is the m -dimensional 
control, A and IJ, are constant n X n -matrices, F;,’ (t) (r = 1, 2, . . ., k) 
are perturbations in the object, qr’ (t) (r = 1, 2, . . ., I) are perturbations in the 

control channel; all ET (t) and % (t) are in the aggregate independent standard 
Wiener processes. 

The que&mns of stability and stabilization of similar systems have been examined in many 

papen(see p-121, for instance ). DI the present paper the dependence of random perturba- 

tions on thestate and the control differs from (1. l), and is defined by the system sk,r 

Sk, 1: x’ = Ax + Bu + ; cpp -fx*Q,.x E;,.’ + i 
-- 

*,1/ u*p,u q,’ (1.2) 
r=1 r=1 

Here Z, U, A, B, E, and Q are the same as in (1. l), cp, and 6, are constant 
n -vectors, Qr and P, are constant symmetric nonnegative definite (Q, > 0, P, 
> 0) matrices of dimensions n X IZ and M X m, respectively. 

While in (1.1) the perturbation depends on the phase space point of the system in 
(1.2) it rather depends only on how far this point is from the coordinate origin, i. e. , 
the dependence of the perturbations on the system’s state in (1.2) is less fine than in 
(1.1). It turns out that the investigation of system (1.2) is simpler in many respects. 
The perturbations in system (1.1) are called perturbations of the first type, and those 

in (1.2), of the second type. 
The necessary and sufficient conditions for the mean-square stability can be obtain- 

ed for both systems by general methods connected either with the investigation of the 
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corresponding systems for the second moments or with the Liapunov function. StabiIiz- 
ability, however, is equivalent to the solvability of the Bellman equation for the corres- 
ponding stochastic opti~zation problem. It is impossible to regard these general meth- 
ods as being sufficiently effective. For a very narrow but important class of systems with 
p~~rbatio~ of the first type, more effective criteria of stabi~ty,ands~bI~zabi~ty have 

been obtained [3,4,9,11,12], reducing the problem to the investigation of certain prop- 

erties of corresponding deterministic systems. tfowever, such a reduction is not possible 
in more general cases. In [I.01 the investigation of the stabilizability of a system with 
perturbation of the first type acting both in the object as well as in a scalar control 
channel was successfully reduced to the solving of a certain optimization problem for a 

system with perturbations in the object but without them in the control channel, Such 
an approach is systematically developed below. 

2. Sequentfal ttabfltzatfon procedure, Inconnectionwith 

system Sk,l we consider k + 1 + 1 systems 

s OIOI sX,o, * . -7 Sk& Sk.1, * . *, Sk,t (2.Q 

Each system in (2.1) is obtained by the rejection of a certain number of p~~rbations 
from system Sk,*. We introduce the following set of stabilizing controls 

Ussr 2 {u = -Kr 1 u stabilizes system s,,,} 

Clearly, U,+l,, C Us,r and UM+I C UW Let us first investigate the stabiliz- 

ability of systems S,,o, 1 f s < k, i.e. * of systems without perturbations in the 

control channel. 

T h e o r e m 2.1. Let system s,_l,o be stabilizable ( Ua_r,o # 0). Then for 

system! S,,, to be stabilizablei(U,,, # g) it is necessary and sufficient that the 

inequality 
infUG(i8_, o ) I;(u)<i, I,(u) 2 Myx*Q,zdl (2.2) 

where z (t) is the solution of system ~!?~_r,~ with0 z (0) = Q, be satisfied. The 

controls u E Us_t.a stabilizing system ss,0 are those and only those for which 

l, (n) < 1. 

Proof. N e c e s s i t y. Let system S,,, with control u = -Ks be stab- 

le (U E U8,0). Then for every positive definite matrix G (G > 0) we can find 

a matrix M > 0 satisfying the Liapunov equation 

6, (M) + cp,*McpsQ, = - G (2.3) 

A,(M) : (A - BK)” M ,+ M (A - BK) + 1%; tp,*Mw?, 

Since u CZZ Us-l.07 we can prove the existence of the inverse negative operator 

RGi. Applying it to both sides of Eq. (2.3), we obtain 

M + ~p~*Mcp,A~-~ (Q,) = T,(M) = - Au-l (G) > 0 (2.4) 

T, (M) _“_ ill - II, (M) 
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Operator II, is positive and, according to (2.4), satisfies the inequality IT, (&I) < 
AI. Consequently, by Theorem 5.6 in [13] its single eigenvalue h = cps*AU-r 

(Q,) cFs satisfies the inequality h ( 2 and, by Ita’s theorem I, (u) ( 1. 

S u f f i c i e n c y. Let the inequality 1, (u) ( 1 be satisfied for some control 

u e us_r,a * This means that the single eigenvalue h = I, (u) of operator nI, 
lies inside the unit circle. Hence it follows that operator T, has an inverse, where 
TUT1 (c) = III,” (C) f IIul (C) + . . ‘i\’ i. e. , operator T,-r is positive. This 
signifies that for G > 0 the matrix ikf = T,;r [-AU-t (G)] > 0 satisfies the 

equation 

M - II, (M) = - AU-l (G) 

Hence, because Eqs. (2.3) and (2.4) are equivalent, it follows that the matrixM> 0 
satisfies Eq. (2,3), i. e. ) system S,, a with control u is stable. Consequently, every 
control u E U,_,,, for which I, (u) ( 1 stabilizes system S,,a. 

Thus, in the investigation of the stabilizability of system Sk,0 a sequential proc- 
edure arises, at whose s -th step (s = 1, 2, . . ., k) an optimization problem is 

solved and inequality (2.2) verified. If this inequality is satisfied then system S,,, 
is stabilizable and we must pass on to the next stage, i. e., ascertain the stabilizability 

of system S8+~,o . If this inequality is not satisfied, then system S,,0 is not stabiliz- 
able, and, hence, system Sk,s is not stabilizable. We go on to investigate the 
stabilizability of systems Sk.,* with 1 < s < 2, i. e., of systems with perturbations 
also in the control charmeL 

T h e o r e m 2. 2. Let system Sk,s_l be stabilizable (Uk,s-~ # 0). Then 
for the stabilizability of system Sk,s ( Uk,# # 0) . lt is necessary and sufficient that 

the inequality 

inf,c, k, s_,J,(u) <I, J,(u) f Ml u”P,udt 
0 

where z (t) is the solution of system Sir, 8_1 with II: (0) = 6,) be satisfied. Those 

and only those controls u E Uk, s_1 for which J, (u) ( 1 stabilize system Sk, I - 
The proof is analogous to that of Theorem 2.1. The procedure of sequential in- 

vestigation of stabilizability, constructed on the basis of Theorem 2.1. can be extend- 
ed in obvious fashion to systems with perturbations also in the control channel, thanks 

to Theorem 2.2. The realization of the whole procedure reduces to the sequential 
solving of k -I- I optimal problems. At first these problems are solved for systems 

%I,0 with criteria I, (u) (s = 1, 2, . . ., k), and next for systems Sk, .,-r with 

criteria J, (u) (s = 1, 2, . . .) 1). Such problems are of independent interest, They 
have already been analyzed in the deterministic case (see [14], for instance). 

N o t e. The sequence in which the perturbations are introduced can be arbitrary. 
Then at each step of the procedure it is necessary to solve an optimization problem, 
choosing functional I (u) or J (u) depending on whether the perturbation is introduc- 

ed the object or in the control channel. 
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3. Solution of degenerate optimization problems 
and a stabilizability criterion in limit form. We 
consider stochastic systems s,,~, 9 and ,!$,, Q+l. Accor~ng to the Note in Sect. 2 

the determination of the stabilizability of systems S,,+I, ,and. L!$, q+.~ is connected with 
the solving of the optimization problems 

I (u) -+ infUEU, I (.u) 2 M 5 ~*Q~+~sdt (3.1) 
0 

J(u)+ infuE,it J(u) f M 5 u*P,+,udt (3.2) 

0 

,,"te' tip= --Rx 1 u stabilizes system. S,,,}. 

I) 
Here 2 (t). is the solutiont;f 

Problems (3.1) and (3.2) with degenerate quadratrc critena are 

limiting CA& of the corresponding nondegenerate problems of optimal stabilization. 

We begin with problem (3.1). The relation 

inf,,nl (u) = lim,h, min I, (u) (3.3) 
II 

is valid. If system SP,s is stabilizable, then 

&fe > 0 is the unique solution of the equation 

A*M + MA + F(M) - MB [eR + H (M)]-’ B*M = - &+I - EG (3.6) 

It can be shown that Me decreases monotonically as 8 \ 0. Therefore, the limit 

MO = limelo M8 exists. Then from (3.3) and (3,4) we obtain 

inf,& tu) = x* (O)M,s (0) 

T h e o r e m 3 . 1. Let system SP,p be stabilizable (U # 0). Then for 

system &+r, Q to be stabilizable it is necessary and sufficient that the inequality. 

V$+l*~o%l+r < 1 is satisfied, The control U, found from (3.5) stabilizes system 

p+~. o as soon as (pP+l*jJG%+~ C 1. 
Problem (3.2) is solved analogously. To formulate the corresponding theorem we 

introduce the equation 

%3 (XI = --I&+1 + SR + H (D6)V1B*D,,z (3.7) 

where &>O is the solution of the equation 

A*D + DA + F (D) - DB’IPp+l + 6R f H fD)I-lB*D = 4% (3. S) 
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(G>O, R>% 6>0) 
we set D,, = limb,,,,Da. 

T h e o I e m 3 . 2. Let system s,,, be stabilizable (u p @)., Then for 
system S,, q+l to be stabilizable it is necessary and sufficient that the inequality 

6q+1*Dotiq+l < 1 be satisfied. The control ub found from (3.7) stabilizes system 

s p p+l as soon aIs 6,+,*D@,+, < 1. 

iet us mention two possible methods for solving Eqs. (3.6) and (3.8). These meth- 

ods are highly effective in the computational sense. The first method is based on the 

fact that solutions of algebraic Eqs. (3.6) and (3.8) can be obtained as the stationary 

solutions of corresponding differential equations (see [15,163, for example). The 
second method, suggested in [lo, 171, is interesting in that the optimal stabilization 
problem for a stochastic system reduces to the successive solving of optimal stabiliza- 
tion problems for the corresponding deterministic system. 

We remark that by using the ideas in Sects. 2 and 3 we can obtain sufficient con- 
ditions for the stabilizability of systems with perturbations of the first type. 

4. Syrtemr in which each perturbation actr on 
o n 1 y o n e e q u a t i o n, Let the perturbations in system (1.2) be such that each 
one acts only on one equation. This means that vectors rpr and 6, have each only 
one nonzero coordinate. We take this coordinate equal to unity. Then all the pertur- 
bations are separated into n classes; the i -th class consists of perturbations acting 
on the i -th control. The whole set of indices of perturbations in both the object and 

the control channel can be separated into classes in corresponding manner. We set 

Vi = {r 1 qr = t?iy 1 6 r < k}, Wi = {r 16, = ei, 1 < r < 1) 

where ei is an n-dimens,tonal vector whose i -th coordinate equals unity while 
the rest equal zero. 

We now consider the n + 1 systems 

S 0 : x’ = Ax + Bu, s = 0 (4.1) 

We introduce the set of stabilizing controls U, = {u = --Kr ) u stabilizes 
system S,). 

T h e o r e m 4 . 1. Let system S,-1 be stabilizable (u,_, # 0). For system 

S, ‘to be st.abilizable’(U8 # $3) : it is necessary and sufficient that the inequality 

inf,,~,,M 7 [x*G,x + u*R,u] dt < 1 
0 
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where s (t) is the solution of system S,_, with 5 (0) = e,, be satisfied. Those 
and only those controls u E [Ts_, for which 

ill \’ [x*G,x + U*Rsu] dt < 1 

stabilize system S, . i, 

The proof is analogous to that of Theorem 2.1. 

Now the stabilizability of system (1.2) (8,) can be ascertained not in k + I steps, 
as in the general case, but in n steps, since at each step the influence of all perturba- 

tions acting on one control is investigated at the same time. In addition, if G, > 0 
and R,>O, thenatthe s -th step this investigation is connected with the solving 
of a traditional optimal stabilization problem with a nondegenerate criterion. 

6. Stablllzabilfty of 8y8temr with arbitrary pert- 
urbations in the object, The constructive-algorithmic nature of the 

method proposed in Sects. 2 and 3 enables us to ascertain the stabilizability of a 
system only when we bave concrete parameters, However, the general approach on 
which this method is based can also yield qualitative results. 

T h e o r e m 5 . 1. Let system ,S’o,o be stabilizable and let Y be a linear 
subspace of phase space X. The following statements are equivalent. 

1”. System SA.,o is stabilizable for any perturbations acting on Y (i. e . , cpT E 
Y, Q, are arbitrary). 

2”. The equality 

infUEc7o o j: 5* (t) x(t) dt = 0 
’ 0 

is valid for the solution z (t) of system So,o with initial condition z (0) E Y . 

3”. Y c Range B (Range B is the range of matrix B). 

p r o o f. The equivalence of the first two statements can be checked by analogy 
with the proof of Theorem 2.1. To prove the equivalent of statements 2’ and 3’ we 

start from the relation oc 

infuELro,o J X* (t) 5 (t) A 2 z* (0) Moz (0) 
0 

where MO = lim,., Me, M, is the unique solution of the equation 

A*M + MA - E-~MBB*M = -E (5.2) 

(E is the unit matrix). From relation (5.1) we get that every space Y of initial 

values, for which statement 2“ is valid, belongs to the space Y, of all solutions of 
the equation y*Moy = 0 which, because of the symmetry of matrix M, ,isequival- 

ent to the equation Af,y = 0 (5.3) 
Let us prove that Y, - Range B, Multiplying both sides of relation (5.2) from 

the left by y* and from the right by 3, we obtain 

Y*f+*My +- y*MAy - ez2y*MBB*My = --y”‘y 

Hence from (5.3) it follows that. for some E > 0 theinequality 

y*McBB*M,y > 0 (5.4) 

is satisfied for every nonzero _U E Y,. Weset Z b M,Y,.Then from(5.4)weget that the 
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inequalitv zBB*z > 0 
r (B) > dim 2. Since 

is satisfied for every nonzero 2 e Z ; consequently, 

M, > 0, we have 1 MC 1 # 0 and, thus,dim 2 
= dim YO. Therefore we obtain 

I” (B) > dim Y, (5.5) 

F~rthe& multiplying both sides of relation (5.2) by c2 and letting E \ 0, we 
obtain M,BB*M, = 0, whence follows the equality M,B = 0 which signifies 

that the columns of matrix B are the solutions of Eq. (5.3), i. e., Range B c y,. 

ComparQ this relation with inequality (5.5), we find that Y0 = Range B, whence 

the equivalence of statements 2’ and 3’ follows at once. 

C o r o 1 1 a r y. For the stabilizability of system Sk,0 with any perturbations (i. e. ) 

for my rp, ami Q,) it is necessary and sufficient that matrix B be no~gu~r and has 
the dimension n X n . 

An incorrect sufficient criterion for the s~bi~abi~~ of systems with arbitrary 

perturbations of the first type in the object was presented in [lo] (Theorem 3). As 
implied by the corollary, which is abo valid for perturbations of the first type, com- 

plete controlability is insufficient for such stabiltzability. This error was mentioned 
in [IS]. We point out that the incorrect criterion in [lo] has no bearing on its main 
contents and that all the rest of the material in [lo] does not rely on this criterion. 

6. E x a m p 1 e. Consider the system 

x,*=2, +ff Vzre+qaEr., U>O (6. f) 

~s‘=u+)/g1’2f+gaa5s,~,.+gIuIr)‘, g,>O, Rt>O, B>Q 

The corresponding determinate system 

51 
*- - x2, “s l =n 

(6.2) 
is stabilizable. We first investigate the stabilizability of the system 

Xi’ = x2, x2 - . - u + l/t?,%” + g&2 42’ -i- B I 24 I q’ (6.3) 

For this, according to Theorem 4.1, we need to solve the optimization problem 

nl/J[gz 2 1x1 + sas;aze8+ P4 dt 
0 

for system (6.2) with ;tl (0) = 0, q (0) = 1 . Note that in this case the correspond- 

ing Riccati algebraic equation 

A*M + MA - fPMbb*M = - G, G = 

is easily solved and that matrix M has the elements 

ml1 = gl V %%I + g22, m12 = Bsl, m22 = B l/W, +-gz2 (6.5) 

Then for system (6.3) we obtain the stabilizability condition 

m2a= PV4%h+ eZ< 1 

now setting fl = 0.2, gr = g, = 0.1, we ascertain the stabilizability of system(6.1). 
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For this, according to Theorem 2.1, for system (6.3) with .zr (0) = a, x2 (0) = 0 
we need to solve the degenerate optimization problem 

where U k (u = -klxl - k,x, 1 u stabilizes system (6.3)). According to Sect. 3 this 
problem is connected with solving the equation 

A*M + MA + rp*Mq~G - Mbb’M / (E + 6*M6) = --E 

The latter can be solved in various ways. In this case using formulas (6.5), 
to realize tb.e iteration process 

A *M(s) + M(S)A _ M@)bb*j@J / (e + 6$&@-‘J 6) = 

-E _ (9*j@-1)@ M(o) = 0 

Relation (6.7) with E > 0 determines a sequence of matrices Mfs) > o 

(6*6) 

it is easy 

(6.7) 

fs= 1, 
2 , . . .f, which converges (see [171) to a matrix M, > 0 satisfying Eq. (6.6). Thus, 
for any E > 0 we can find M, and, then M,. In the considered case the ele- 
ments of matrix I@, , to within 0.5.10-9 , are: mll” = 1.04125, mlzo = 0.04165, 
?TQ~’ = 0.04335. In accordance with Theorem 3.1 we obtain the condition 

a < 1 / v/ml10 = 0.97999 

for the stabilizability of system (6.1) with fl = 0.2, gl = g, = 0.1. 
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3. 
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